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Abstract. Checking whether two quantum circuits are equivalent is im-
portant for the design and optimization of quantum-computer applica-
tions with real-world devices. We consider quantum circuits consisting
of Clifford gates, a practically-relevant subset of all quantum operations
which is large enough to exhibit quantum features such as entangle-
ment and forms the basis of, for example, quantum-error correction and
many quantum-network applications. We present a deterministic algo-
rithm that is based on a folklore mathematical result and demonstrate
that it is capable of surpassing previously considered state-of-the-art
method in terms of performance. In particular, given two Clifford cir-
cuits as sequences of single- and two-qubit Clifford gates, checks their
equivalence in O(n2 +n ·m) time in the number of qubits n and number
of elementary Clifford gates m. Using the performant Stim simulator,
we check equivalence of quantum circuits up to 1000 qubits (with a cir-
cuit depth of 10.000 gates) in ∼22 seconds and 100.000 qubits (depth
10) in ∼15 minutes, outperforming the existing SAT-based approach
by an order of magnitude. This approach shows that the correctness of
application-relevant subsets of quantum operations can be verified up to
large circuits in practice.

1 Introduction

Quantum computing promises to perform classically intractable tasks for a large
range of applications [35,33]. While we are entering the era of Noisy Intermediate-
Scale Quantum computing [38], the high noise levels require us to very accurately
compile textbook quantum circuits onto real-world devices, which can only han-
dle shallow-depth circuits and have various constraints (connectivity, topology,
native gate sets, etc.) [20,18]. A crucial part of the design and optimization
over quantum circuits which satisfy the specification is verifying whether two
quantum circuits, each presented by a classical description, implement the same
quantum operation, i.e. checking equivalence of quantum circuits.

Correctness verification is a well-studied field in the classical domain [22] [31]
[30] but unfortunately not all methods directly carry over to quantum comput-
ing because the state of n quantum bits is generally represented as 2n complex
values [35]. Equivalence checking of quantum circuits, phrased as either exact



‘non-identity checking’1 or approximate non-identity checking whether the cir-
cuit is close or far away from the identity circuit, falls in quantum complexity
classes which are analogs of NP [10,4] (NQP [39] and QMA [27,28], respectively).
Thus we should not hope for efficient algorithms in general.

Existing deterministic methods analyzing circuits only consisting of only
quantum gates as quantum operations (no quantum measurements) are based
on encoding as Boolean satisfiability instances [9] (also [46,47] for restricted
circuits), satisfiability modulo theories [8], path-sums [5,6], rewrite rules [37]
[19][45], and on various flavors of decision diagrams, including QMDD [16,41,36,15],
LIMDD [42], Tensor-DD [26], BDD [44,17] and others [43,48]. In addition, some
probabilistic methods are known [14,32].

In this paper, we focus on exact equivalence checking of two (classical descrip-
tions of) circuits with Clifford gates only, a subset of all quantum gates which is
ubiquitous to quantum computing and is highly relevant for quantum error cor-
rection [23,40] and quantum networking applications [25]. For exact non-identity
check of Clifford circuits, a reduction to satisfiability was presented by [9], in a
tool called QuSAT. For approximate non-identity check, a polynomial-time al-
gorithm exists [7] whose runtime scales with the accuracy of the approximation
(a polynomial in the number of qubits).

Here, we demonstrate that a folklore result (10.5.2 in [35]) translates into a
deterministic algorithm of polynomial-time O(n2 +m · n) for exact equivalence
checking of Clifford circuits, with n the number of qubits and m the sum of ele-
mentary Clifford gates in the two circuits. We will state that algorithm explicitly
in a self-contained manner. The main idea holds for arbitrary quantum circuits,
and thus we will state the theorem in its full generality. In the particular case of
equivalence checking of Clifford circuits, the algorithm is reduced to simulating
the Clifford circuit, which can be done efficiently [24,3].

We empirically evaluate the algorithm by using the performant Clifford-
circuit simulator Stim [21], reaching circuit depths of 1000 qubits and 10.000
elementary Clifford gates in less than a minute, and 100.000 qubits for depth-10
circuits in approximately 15 minutes, outperforming the SAT-based approach
by an order of magnitude. Our open-source implementation can be found on [2].

We emphasize that the task in this work is equivalence checking given a white-
box classical descriptions of the quantum circuit, as opposed to the different task
where one is given access to a quantum computer which performs the quantum
circuit as black box [34]. For Cliffords, specifically see [11] and [32].

In Section 2, we provide the necessary background to quantum computing
and a simple example of applying the algorithm for comparing two equivalent
circuits. We state the theorem explicitly and the resulting algorithm in Section 3.
In Section 4, we use the Stim simulator to run the algorithm, which outperforms
the SAT-based approach by an order of magnitude. We conclude in Section 5.

1 Verifying equivalence of circuits C1, C2 is reducible to checking if the circuit C1,
followed by the inverse of C2, is equivalent to the identity circuit, i.e. it does not
change the inputs
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2 Preliminaries

We briefly introduce relevant quantum computing concepts and refer to [35] for
a more elaborate introduction.

2.1 Quantum circuits and fundamental concepts

Classical circuits are limited to bits, which take values 0 and 1. In contrast, the
state of a quantum bit or qubit can be expressed as a complex-valued 2-vector

of unit norm. Examples of single-qubit states are

[
1√
2
1√
2

]
and

[
1√
5

2i√
5

]
where i is the

imaginary unit (i2 = −1). Two possible quantum states are the computational-

basis states

[
1
0

]
and

[
0
1

]
, usually denoted in Dirac notation as |0⟩ and |1⟩. Thus,

we can write an arbitrary single-qubit state |ϕ⟩ =
[
α0

α1

]
= α0 |0⟩ + α1 |1⟩ where

the complex numbers αi satisfy |α0|2 + |α1|2 = 1. Here, |z| denotes the modulus
of the complex number z: when writing z = a+ b · i for real numbers a, b and i
the imaginary unit satisfying i2 = −1, the modulus equals |z| =

√
a2 + b2 and

can also be defined through the complex conjugate z∗ = a− b · i as |z| =
√
z · z∗.

With this notation, our examples become 1√
2
(|0⟩+ |1⟩) and 1√

5
(|0⟩+ 2i |1⟩).

Two single-qubit quantum states |ϕ⟩ , |ψ⟩ are combined into a two-qubit state
|ϕ⟩ ⊗ |ψ⟩, where ⊗ denotes the tensor product (Kronecker product) from lin-
ear algebra. In general, an n-qubit state is a complex vector of 2n entries and
can be written in Dirac notation as

∑
x∈{0,1}n αx |x⟩, where |x⟩ are defined as

e.g. |0010⟩ = |0⟩ ⊗ |0⟩ ⊗ |1⟩ ⊗ |0⟩. Here, the complex values αx should satisfy∑
x∈{0,1}n |αx|2 = 1, i.e. the norm of the vector representing the quantum state

equals 1. Examples of two-qubit states are |00⟩ and 1√
6
(|00⟩+i |01⟩−2 |11⟩). Any

(nA + nB)-qubit quantum state |ϕ⟩ that cannot be written as |ϕA⟩ ⊗ |ϕB⟩, with
|ϕA⟩ (|ϕB⟩) a state of nA (nB) qubits, is called entangled, e.g. 1√

2
(|00⟩+ |11⟩).

There are two main operations on quantum states in the usual circuit model:
quantum gates and quantum measurements. We will only use gates here. A
quantum gate on n qubits is represented by a 2n by 2n unitary matrix U . A
quantum state |ϕ⟩ is updated by a unitary matrix as U · |ϕ⟩ where · denotes
matrix-vector multiplication. As example, consider the following single-qubit
gates:

Hadamard H =
1√
2

[
1 1
1 −1

]
Phase gate S =

[
1 0
0 i

]
.

Applying this to the state |0⟩ for example, we obtain

H · |0⟩ = 1√
2

[
1 1
1 −1

]
·
[
1
0

]
=

1√
2

[
1
1

]
=

|0⟩+ |1⟩√
2

and similarly one can compute S |0⟩ = |0⟩.
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A quantum gate U is a unitary matrix, which means U · U† = U† · U = 12n ,
where 12n is the identity matrix on vectors of 2n entries (i.e. the matrix that
has the property 12n · v⃗ = v⃗ for each vector v⃗ of 2n complex numbers) and the
adjoint operator (.)† means transposing the matrix and replacing each matrix
entry by its complex conjugate. For example, the Hadamard gate and phase gate
have adjoint operators

H† =
1√
2

[
1 1
1 −1

]
= H S† =

[
1 0
0 −i

]
.

It is not hard to check that indeed H† ·H = S† · S = 12 =

[
1 0
0 1

]
. Applying an

n-qubit gate A to the first part of an (n +m)-qubit quantum state |ϕ⟩ is done
by tensoring with the identity, i.e. A⊗ 12m is applied to the entire state |ϕ⟩.

A notion we will use later on is the bra ⟨ϕ| = (|ϕ⟩)† and the inner product
⟨ϕ|ψ⟩ =

∑
x∈{0,1}n a∗x · bx for |ϕ⟩ =

∑
x∈{0,1}n ax |x⟩ and |ψ⟩ =

∑
x∈{0,1}n bx |x⟩.

A quantum circuit is a sequence of gates, applied to an initial quantum state
(typically |0⟩⊗n

). A quantum circuit can be better explained by an elementary
example (see Example 1 in Section 2.1).

A special but important class of quantum circuits are the Clifford circuits.
Any Clifford gate can be written as Clifford circuit2 consisting only of three ele-
mentary Clifford gates: H,S and CNOT (defined above). One of the significant
features of Clifford circuits is that they can be simulated in polynomial time
in the number of qubits and number of elementary Clifford gates by classical
computers, as shown by the Gottesman-Knill theorem [24] (their methods are
discussed in section 2.2). In addition, Clifford circuits can generate many in-
teresting entangled states (as demonstrated in the example of section 2.1), and
become universal – meaning they can approximate any quantum circuit – if non-
Clifford gates are added to the gate set [13].

Example 1. We provide an example for calculating the output states of two
simple circuits using standard linear algebra methods.

A)

H H

H H
B)

For both circuits, we will assume that the initial state on each qubit is |0⟩.
– We start by making the calculations for the A circuit. For a Hadamard gate

applied on the first qubit we get:

H |0⟩ = 1√
2

[
1 1
1 −1

] [
1
0

]
=

1√
2

[
1 · 1 + 1 · 0

1 · 1 + (−1) · 0

]
=

1√
2

[
1
1

]
2 When we say ‘circuit’, we mean the sequence of quantum gates, i.e. without the
input states |0⟩⊗n.
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The result of applying a Hadamard gate on the second qubit will be the
same. Since the two qubits are independent (i.e. we don’t use an entangling
gate such as CNOT) we can calculate the state of the (whole) system by
tensoring the two states:(

1√
2
(|0⟩+ |1⟩)

)
⊗
(

1√
2
(|0⟩+ |1⟩)

)
=

1√
2

1√
2
(|0⟩+ |1⟩)⊗ (|0⟩+ |1⟩)

=
1

2
(|0⟩ ⊗ |0⟩+ |0⟩ ⊗ |1⟩+ |1⟩ ⊗ |0⟩+ |1⟩ ⊗ |1⟩).

In matrix notation this would be:

1

2


1
0
0
0

+
1

2


0
1
0
0

+
1

2


0
0
1
0

+
1

2


0
0
0
1

 =
1

2


1
1
1
1

 .
In other words the state is 1

2 (|00⟩+ |01⟩+ |10⟩+ |11⟩).
Now we will calculate how this state is transformed when we apply a CNOT
gate where the first qubit is the control qubit and the second one is the
target qubit:

CNOT ·


1
1
1
1

 =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 · 1
2


1
1
1
1

 =
1

2


1
1
1
1


So the state remains the same. A more intuitive way to apply the CNOT is
to flip the second input of |∗∗⟩ whenever the first input is 1. I.e. 1

2 (|00⟩ +
|01⟩ + |10⟩ + |11⟩) becomes 1

2 (|00⟩ + |01⟩ + |11⟩ + |10⟩) which is identical
and therefore the state is not affected. Finally, we apply the two remaining
Hadamard gates to the state 1

2 (|00⟩+ |01⟩+ |10⟩+ |11⟩).

(H ⊗H)

1

2


1
1
1
1


 =

1

4


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1



1
1
1
1

 =


1
0
0
0

 = |00⟩

Therefore, applying Hadamard gates to each qubit of the circuit starting
with the initial state 1

2 (|00⟩+ |01⟩+ |10⟩+ |11⟩) results to the state |00⟩.
– Now for the much simpler circuitB, we start again by both qubits in the state

|0⟩. Following the same rules we applied for the CNOT of B, the resulting
state will be |00⟩.

Both circuits return the same state when we start by |00⟩. This is not unex-
pected, in fact the circuits were chosen such that they are equivalent up to global
phase. Therefore, as long as both circuits start with the same initial states, they
will output states that can only differ by a phase (at most).
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2.2 Stabilizer states

The Pauli gates are the following set of gates:

I = 12 =

[
1 0
0 1

]
, X =

[
0 1
1 0

]
, Y =

[
0 −i
i 0

]
, Z =

[
1 0
0 −1

]
.

The n-qubit Pauli group Pn is the set {αP | α ∈ {±1,±i}, P ∈ Paulin} where
Paulin is the tensor product of n Pauli operators (a “Pauli string”). For ex-
ample X ⊗ Z ⊗ Y ⊗ Y ∈ Pauli4. The Pauli group forms a group under matrix
multiplication. Any two elements Pk, Pl ∈ Pn either commute or anti-commute:
Meaning that either Pk ·Pl = Pl ·Pk or Pk ·Pl = −Pl ·Pk. Finally, we can give an
alternative, equivalent definition of the Clifford group in terms of Pauli matrices:
the Clifford group is the set of unitary operators that stabilize the Pauli group
when acting on it by conjugation i.e. all the 2n × 2n unitary matrices V such
that V PV † ∈ Pn for all P ∈ Pn.

We will now lay out the stabilizer formalism for efficient classical simulation of
Clifford circuits with |0⟩⊗n

as input state [24,3]. A unitary operator U stabilizes
a quantum state if U |ϕ⟩ = |ϕ⟩. The so-called stabilizer states form a strict
subset of all quantum states which can be described by maximal commutative
subgroups of the Pauli group using n elements of Pn. For example, the state
|0⟩ is stabilized by the Pauli group {Z, I} while the state |+⟩ = 1√

2
(|0⟩ + |1⟩)

is stabilized by {X, I}. If |ϕ⟩ and |ψ⟩ are stabilizer states with stabilizer groups
G,H, respectively, then |ϕ⟩ ⊗ |ψ⟩ is also a stabilizer state with stabilizer group
{g ⊗ h | g ∈ G, h ∈ G}. For example, the state |00⟩ = |0⟩ ⊗ |0⟩ is stabilized by
the group {I ⊗ I, I ⊗ Z,Z ⊗ I, Z ⊗ Z}.

Maximal commutative subgroups of the Pauli group only have a single quan-
tum state they stabilize; thus, we can represent any stabilizer state by its sta-
bilizer group, instead of by providing its description as a vector of 2n complex
numbers. The stabilizer group of an n-qubit stabilizer state has 2n elements, so
storing all of those would not yield a succinct description of the state. However,
the stabilizer group can be succinctly represented by the generator set of the
stabilizer group, which only has n elements ∈ Pn. Since there are four Pauli
gates, we can represent each of these using log2(4) = 2 bits. Furthermore, one
can show that each element of a stabilizer group is of the form ±P1 ⊗ · · · ⊗ Pn

with Pj a Pauli gate; thus, 2n+ 1 bits are needed to represent an element of an
n-qubit stabilizer group (2n for the Pauli gates in the tensor product and the 1
bit for the prefactor ±). Therefore, by this method, only n · (2n+ 1) = 2n2 + n
bits are required for the description of a quantum state that can be generated
by Clifford circuits while a naive description would require 2n complex numbers.

Updating the generators of a stabilizer state after an elementary Clifford
gate is applied to the corresponding stabilizer state can be done in time O(n), as
follows. Suppose that P = ±P1 ⊗ · · · ⊗ Pn stabilizes an n-qubit state |ϕ⟩. Then
given an n-qubit gate U , UPU† stabilizes U |ϕ⟩. This is because UPU†U |ϕ⟩ =
UP |ϕ⟩ = U |ϕ⟩ . Now if U is a single-qubit operation, we can write U = Uj , where
we denote Uj = I⊗I · · ·⊗I⊗U⊗I . . . I with U at the j-th position in the tensor
product. Therefore the application of U to the j-th qubits of |ϕ⟩ updates each
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element of the stabilizer group to UjPU
†
j = ±IP1I ⊗ · · · ⊗UjPjU

†
j ⊗ . . . IPnI =

±P1⊗· · ·⊗UjPjU
†
j⊗. . . Pn. That is, only the j-th entry in the tensor product of P

should be updated. This can be done in constant time by a lookup table for each
of H,S and each Pauli gate. It can be shown that updating only the n generators
of the stabilizer group suffices, so that the update of H or S takes O(n) time. A
similar procedure works for the two-qubit gate CNOT, also requiring O(n) time
to update the stabilizer generators.

2.3 Circuit Equivalence-Check Problem

We proceed to formally state the main problem. We are presented with two
n-qubit Clifford quantum circuits U and V , each represented by a (classical
description of) a circuit of only elementary Clifford gates (for example, H,S and
CNOT). The aim of the method is to determine whether or not U and V are
equivalent.

Definition 1. Fix the number of qubits n ≥ 1. Given two n-qubit unitaries U, V ,
we say that U is equivalent to V , denoted U ≃ V , if U = cV for some complex
number c.

The factor c is often called ‘global phase’ and is irrelevant to any observable
properties of the two unitaries (for details, see [35]). We remark that if U = cV ,
then c satisfies |c|2 = 1. This follows from the fact that U and V are unitaries:
1 = UU† = (cV ) · (cV )† = cV · c∗V † = |c|2 · V V † = |c|2 · 1, hence |c|2 = 1.

3 Reducing Clifford Circuit Equivalence to Classical
Simulation

We explicitly formulate the theorem (the statement appears in [35] 10.5.2) that
gives the necessary and sufficient conditions for two gates to be equal. An explicit
formulation of the statement together with a formal proof will provide a better
understanding of the algorithm.

Theorem 1. Let U, V be two unitaries on n ≥ 1 qubits. Then U is equivalent
to V if and only if the following conditions hold:

1. for all j ∈ {1, 2, . . . , n}, we have UZjU
† = V ZjV

†; and
2. for all j ∈ {1, 2, . . . , n}, we have UXjU

† = V XjV
†.

Proof. If U ≃ V , then U = cV for some c ∈ C, |c| = 1, so UZjU
† = cV Zj(cV )† =

cV Zj(V )† · c∗ = |c|2V ZjV
† = V ZjV

† and similarly for Xj where c∗ is the
complex conjugate of c.

For the converse direction, we first note that if U and V coincide on Xj

and Zj by conjugation, then they must coincide by conjugation on all Pauli
strings. The reason for this is that any Pauli string can be written as a product
of {Xj , Zj}nj=1 modulo a complex number from {±1,±i}. Given such a product
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P =
∏n

k=1X
xk

k Zzk
k where xk, zk ∈ {0, 1} determine if Xk or Zk is included in the

product, we see that UPU† = U (
∏n

k=1X
xk

k Zzk
k )U† =

∏n
k=1 UX

xk

k U†UZzk
k U†

because U†U = 1⊗n (as U is unitary). This shows that UPU† = V PV † if
UXkU

† = V XkV
† and UZkU

† = V ZkV
† for all k = 1, 2, . . . , n.

Given an n-qubit quantum state |ϕ⟩, we write |ϕ⟩⟨ϕ| in the Pauli basis:

|ϕ⟩⟨ϕ| =
∑

P∈{1,X,Y,Z}⊗n

αPP

where αP ∈ C are unique. Note that the state |ϕ⟩⟨ϕ| can be seen as a density
operator and any density operator can be generated by a Pauli basis [35,29].
Hence, using the observation that U and V coincide on all Pauli strings by
conjugation, we find that U |ϕ⟩⟨ϕ|U† =

∑
P∈{1,X,Y,Z}⊗n αPUPU

†, which by

the observation above equals
∑

P∈{1,X,Y,Z}⊗n αPV PV
† = V |ϕ⟩⟨ϕ|V †, hence

A |ϕ⟩⟨ϕ|A† = |ϕ⟩⟨ϕ| for A = V †U . By conjugating both sides with |ϕ⟩, we obtain
| ⟨ϕ|A|ϕ⟩ |2 = |⟨ϕ|ϕ⟩|2 = 1. Thus, the modulus of the inner product between
A |ϕ⟩ and |ϕ⟩ equals the product of their norms (which both equal 1), hence the
tightness condition of the Cauchy-Schwarz inequality implies that A |ϕ⟩ and |ϕ⟩
are linearly dependent. That is, |ϕ⟩ is an eigenvector of A.

Since this holds for arbitrary n-qubit states |ϕ⟩, each vector is an eigenvector
of A. By standard linear algebra, we know that this implies that A is a multiple
of the identity operator. Thus A = c1, hence U = cV . ⊓⊔

For equivalence checking of Clifford circuits, the theorem induces an algo-
rithm which can be reduced to simulating the Clifford circuit. This is well known
to efficient [24,3].

The algorithm:

From Section 2, we know that S0 = {Zj | j = 1, 2, ..., n} generate the sta-

bilizer group of the state |0⟩⊗n
, and thus S0 “represents” |0⟩⊗n

in the stabilizer
formalism. Similarly for {Xj | j = 1, 2, . . . , n} for the state |+⟩⊗n

. Further-
more, in Section 2 we explained that updating a stabilizer state representation
{g1, g2, . . . , gn} (i.e. the gj are generators of the state’s stabilizer group), after
a Clifford gate U is found as {Ug1U†, . . . , UgnU

†}. Combining these facts with
Theorem 1, we obtain the following algorithm for equivalence checking of Clifford
circuits by a reduction to Clifford-circuit simulation:

1. simulate U gate-by-gate in the stabilizer formalism, where the stabilizer
group generators of the input state are {Z1, Z2, . . . , Zn}, i.e. the input state is
|0⟩⊗n

. This yields the output stabilizer generator set {UZ1U
†, UZ2U

†, . . . , UZnU
†}

2. do the same for V , yielding {V Z1V
†, V Z2V

†, . . . , V ZnV
†}

3. check for each j = 1, 2, . . . , n, whether the Pauli elements UZjU
† and V ZjV

†

are equal. If there is some j for which they are non-equal, return “Unequiv-
alent”.
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4. Repeat steps (1-3) for the input stabilizer generator set {X1, X2, . . . , Xn},
which is produced by starting with the generator set of |0⟩⊗n

, followed by
applying the Hadamard gate H on each qubit (since HZH† = X).

5. If the algorithm reaches this point, U and V agree by conjugation on all Xj

and Zj . Return “Equivalent”.

Since storing the n stabilizer generators for an n-qubit state requires O(n2)
space and updating them for a single-qubit gate or two-qubit gate takes time
O(n), the runtime of the algorithm is O(n2+m ·n) with n the number of qubits
and m the sum of the number of elementary Clifford gates in U and V .

We note that requiring that U and V agree on all Xj and Zj by conjugation
is a stronger statement than requiring that U and V output the same state on
input |0⟩⊗n

and |+⟩⊗n
. As counterexample for n = 2, note that U = 12 ⊗ 12

and V = CNOT map both states to themselves, while they are not equivalent,
as witnessed by U(12 ⊗ Z)U† = 12 ⊗ Z ̸= Z ⊗ Z = V · (12 ⊗ Z) · V †.

Example 2. Here we provide an example of applying the algorithm for compar-
ing two simple circuitsA and B, the same circuits as in Example 1 of Section 2.1.
The algorithm will evaluate both circuits for two distinct initializations of states.
In particular, in order to decide if two circuits are equivalent we simulate them
using the stabilizer formalism for both the initial states |0⟩ and 1√

2
(|0⟩ + |1⟩).

More precisely, we need to simulate the circuits gate-by-gate using the update
rules of the stabilizers formalism.

IfMi stands for the operator that corresponds to the ith qubit, the algorithm
(Section 3) decides that two circuits are equivalent when:

1. Applying the sequence of gates of the first circuit initializing by Zi on every
qubit i returns the same stabilizers as for the gates of the second circuit, and

2. Applying the sequence of gates of the first circuit initializing by Xi on every
qubit i returns the same stabilizers as for the gates of the second circuit.

If the stabilizers agree then we deduce that the circuits are equivalent, oth-
erwise they are different.

In the calculations below, the “7→” indicates that some transformation is
taking place (i.e. applying some gate), while we use equality when we rewrite by
the appropriate stabilizers states. Applying a single qubit gate U to the state Pi

of the ith qubit corresponds to the operation UiPiU
†
i , where the indices indicate

the qubit to which each operator acts. For the case of CNOT gates, which are
2 qubit operators, we will simplify by omitting the indices. That is because we
can keep track of the qubits they act to by consulting the circuit diagrams A
and B.

– For the case of |0⟩⊗n
we update the states A as follows:
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{Z1, Z2} 7→ {H1 Z1 H
†
1 , H2 Z2 H

†
2}

= {X1, X2}
7→ {CNOT X1 CNOT

†, CNOT † X2 CNOT
†}

= {X1 X2, I1 X2}

7→ {H1 X1 H
†
1 H2 X2 H

†
2 , H1 I1 H

†
1H2 X2 H

†
2}

= {Z1 Z2, I1 Z2}
= {I1 Z2, Z1 Z2}

– For the case of |0⟩⊗n
we update the states of B as follows:

{Z1, Z2} 7→ {CNOT Z1 CNOT
†, CNOT Z2 CNOT

†} = {I1 Z2, Z1 Z2}

Therefore the two circuits agree on the |0⟩⊗n
case. Analogously, by perform-

ing the updates of the states but starting with states Xi (instead of Zi) we can
observe that the resulting generators agree there too. Therefore we come to the
conclusion that the two circuits are equivalent.

4 Experiments

We implemented the algorithm from Section 3 in Python using the open-source
Stim Clifford-circuit simulator [21] as a simulator backend. See [2] for our open-
source implementation.

We empirically evaluated the implementation and compared the runtime to
QuSAT, a recent SAT-based Clifford equivalence checker [9]. Across all instances
in which QuSat successfully concluded its computations, the outcomes aligned
with those obtained by the method we use. Thereby signifying a consistent clas-
sification of the tested circuit pairs as either equivalent or non-equivalent by
both approaches. We have used a laptop with a 3.2 GHz M1 processor with
8Gb RAM. For making a fair comparison we generate random circuits using
QuSAT [1], which consists of generating random sequences of elementary Clif-
ford gates H,S,CNOT. QuSAT generates circuits which are completely ‘filled’
in the sense that if the depth is d, the number of gates applied to each qubit is
also d; thus, since only H,S,CNOT are used, the number of gates in a depth-d
circuit is between d · n2 (only two-qubit gates) and d ·n (only single-qubit gates).
We emphasize that the runtime of this work’s method is deterministic and a
function of the number of qubits and the number of gates only, and is hence
independent of the internal structure of the two input circuits.

Next, we ran both QuSAT and our implementation on both equivalent and
non-equivalent random Clifford circuits which were thus produced by QuSAT.
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The results are shown in Figure 1, for varying number of qubits (Figure 1a,
Figure 1b and Figure 1c) and varying quantum-circuit depth (Figure 1d). Our
experiments for equivalence checking of non-equivalent random circuits show
very similar running times as for equivalent random circuits (not displayed).
Finally, we have tested the method for circuits of 1000 qubits and depth 10000
for identical and non-equivalent circuits, yielding runtimes of 21.72 and 22.80
seconds, respectively (not displayed).

We observe that the implementation is very fast and can handle large circuits:
up to 1000 qubits with depth of 10.000 gates in ∼22 seconds, and 100.000 qubits
with 10 gates in ∼15 minutes (Figure 1b). The tested regime of the method
consistently outperforms QuSAT by one to two orders of magnitude (10× to
100×) or even more. We also see that the runtime of QuSAT, whose runtime is
probabilistic, scales exponentially in the number of qubits whereas the runtime
of our approach is deterministic and we know it has polynomial scaling in both
number of qubits and number of gates (Section 3).

Finally, we would like to note that there is yet another tool with polyno-
mial scaling to the number of qubits and gates, this tool is named “feynman”
[5]. In particular, the submodule that performs equivalence checking of circuits
is named “feynver”. Feynver is based on Feynman sums and it can verify the
equivalence of general quantum circuits. We will not make an detailed compar-
ison to this tool as it is not equivalent to ours: It can reliably verify that two
circuits are equivalent but it can only conclude that two circuits are different for
special classes of circuits. Our experiments showed that Feynver is slower than
both QuSAT and our method. For example, the next table shows the running
time of all three tools for a random circuit of 50 qubits and depth=50. In par-
ticular this circuit had 11092 gates:

Circuit This work QuSAT Feynver
q = 50, d = 50 2 sec 120 sec 3856 sec

5 Conclusions

In this paper, we demonstrate that a deterministic algorithm, which is based
on a folklore mathematical result, can surpass the efficiency of current methods
for exact equivalence checking of quantum circuits consisting of Clifford gates.
The algorithm reduces equivalence checking to classical simulation of Clifford
circuits and runs in time O(n2 + n · m), with n the number of qubits and m
the total number of elementary Clifford gates of the two input circuits. We have
implemented our algorithm using the Stim simulator. We tested our method on
a variety of benchmark circuits with different sizes and depths, and compared
it to QuSAT. Our results, reaching up to 1000 qubits (with depth 10.000) in
less than a minute and 100.000 qubits (depth 10) in ∼15 minutes, demonstrate
that this approach consistently outperforms the existing SAT-based-approach
QuSAT. Furthermore, since the method is deterministic, its scaling behavior is
known. Possible future work includes extending this method to arbitrary circuits
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Fig. 1: Runtime of circuit-equivalence checking between identical randomly-generated
Clifford circuits for various circuit depths and number of qubits. The step pattern
observed for lower values is a result of the limitations of the time-measuring function
which operates in milliseconds. The runtimes for non-equivalent circuits (not displayed)
are very similar.
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using non-Clifford gates [7,5], following existing classical simulation formalisms
of such circuits [12].
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